Tuesday, March 3, 2015

Wednesday March 4, 2015


GiZMO LAB

LT: I can describe how the body uses homeostasis to regulate itself.

Name: ___________________           Date: ______________ Class: __________________


Student Exploration: Human Homeostasis


Vocabulary: Define these words as you go, and give an example of each.

Dehydration


Heat stroke


Homeostasis


Hypothermia                                                         


Involuntary


Thermoregulation


Voluntary


 
Gizmo Warm-up
To survive, an organism must be able to maintain stable internal conditions in a changing environment. This process is called homeostasis. The Human Homeostasis Gizmo™ allows you to explore how the human body stays at a nearly constant temperature in different conditions. Notice the Air temp. and Body temp. thermometers representing the air temperature and body temperature.

1.   What is the initial air temperature? _____________
        

2.   What is the initial body temperature? ___________


3.   Next to each factor listed below, write “increase,” “decrease,” or “same” based on how you expect that factor to affect body temperature.

Raising air temperature: ________________          Sweating:   ________________
                                         
Lowering air temperature: ________________                 Shivering: _____________

Adding clothing: _______________________                  Exercising: ____________


To Log Onto Gizmo:

2. User name: KatieMcClanahan

3.Password: LuckyDuck13

4. Go to your class period

5. Launch Gizmo




Activity A:

Body temperature
Get the Gizmo ready:
·    If necessary, click Reset ().
Question: What factors increase or decrease body temperature??


Observe:
1.   Set the Air temp. at 0 °C (32 °F) and Body temp. at 37 °C (99 °F),
2.   Click Play ().
3.   After one simulated hour (does not have to be exact), click Pause ().

What is the body temperature after one hour? ________________




Gather data:
1.   Fill in the first line of the data table below.
2.   Then, use the same procedure to test the effect of each of the following factors.
3.   Click Reset between each trial.
4.   Record the initial and final body temperatures in the table below. (Leave the last column blank.)
·      Set the Exercise level to 70%. (All other settings in default position.)
·      Set the Sweat level to 70%.
·      Under Body position, select Shivering.
·      Next to Clothing, click Add four times to add a sweatshirt, hat, pants, and parka
Factor
Initial body temp.
Body temp. after one hour
Effect of factor on body temperature
Standing still



Exercising



Sweating



Shivering



Adding clothing




Analyze:
Determine the effect of a factor on body temperature, compare the final body temperature with that factor to the final body temperature while standing still. Based on this comparison, fill in the last column of the data table.

A.Which factor raised body temperature the most? __________________

B.Why do you think this process raises body temperature? ____________________________________________________________

C.Which factor lowered body temperature the most?


D.Why do you think this process lowers body temperature?


Activity B:

Thermoregulation
Get the Gizmo ready:
·    Click Reset.

Introduction:
Thermoregulation is the process in which a steady temperature is maintained inside the body. Some responses to temperature changes, such as sweating and shivering, are involuntary—they occur automatically. Other actions, such as exercising or putting on clothes, are called voluntary responses because they are things we have to think about doing.

Question: In the Human Homeostasis Gizmo, you can control both involuntary and voluntary responses to temperature changes. How good are you at thermoregulation?


 
Play the Gizmo:
1. Click Play. After one hour, the air temperature will start to fluctuate.
2. Using what you have learned, try to maintain a steady body temperature by manipulating the Exercise level, Sweat level, Body position, and Clothing. (You may wish to click Pause occasionally to give yourself time to think.)
3. Click Pause after at least 10 hours have passed, if you can survive that long!
4.Select the GRAPH tab. Sketch the resulting graph into the space at right.

What does this graph show? ______________

____________________________________

_______________________________________

Investigate:
1.Click Reset. Click Play, and deliberately create a situation in which the body temperature gets so low that the simulation stops.

A.How did you do this? ________________________________________________________

B.What is the name for this condition? ________________________________________________________

C.At what body temperature is immediate medical treatment required?

________________________________________________________


Investigate:
1.Click Reset. Click Play, and create a situation in which the body temperature gets so high that the simulation stops.

A.   How did you do this? __________________________________________________

B.   What is the name for this condition? ______________________________________

C.  At what body temperature is immediate medical treatment required? _____________

(Activity B continued on next page)
Activity B (continued from previous page)

Challenge yourself:
1. Click Reset. Click Play, and see if you can maintain a constant body temperature of 37 °C (99 °F) for 24 simulated hours or more. You will have to click Drink water or Eat food to avoid dehydration (lack of water) and low blood sugar. If the Fatigue level gets too high, you will have to rest.

2.If you succeed, click Pause. Select the GRAPH tab and click the camera () to take a snapshot of the graph. Open a blank document and paste the snapshot into the document. You can print out the document and hand it in with this worksheet.


Analyze:
1. Select the TABLE tab. The air temperature and body temperature are recorded every hour.
2. Scroll through the table to find the highest and lowest air temperatures.

A.   What was the highest air temperature you had to deal with? ______

B.   How did you respond to this temperature? ____________________

__________________________________________________________

C.  What was the lowest air temperature in the simulation? __________


D.  How did you maintain a constant body temperature at this time? _______________________________________________________

___________________________________________________________







Think and discuss: Other than the options available in the Human Homeostasis Gizmo, what other methods are used to maintain body temperature? Try to think of both voluntary and involuntary responses.


_________________________________________________________







_________________________________________________________

Critique:
1.   Describe the advantages and disadvantages of the model of human homeostasis used in the Gizmo.









2.   In what ways is the model realistic? What factors are not included in the model?


No comments:

Post a Comment